| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 | 
							- <?php
 
- namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
 
- use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
 
- /**
 
-  *    For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
 
-  *    orthogonal matrix Q and an n-by-n upper triangular matrix R so that
 
-  *    A = Q*R.
 
-  *
 
-  *    The QR decompostion always exists, even if the matrix does not have
 
-  *    full rank, so the constructor will never fail.  The primary use of the
 
-  *    QR decomposition is in the least squares solution of nonsquare systems
 
-  *    of simultaneous linear equations.  This will fail if isFullRank()
 
-  *    returns false.
 
-  *
 
-  *    @author  Paul Meagher
 
-  *
 
-  *    @version 1.1
 
-  */
 
- class QRDecomposition
 
- {
 
-     const MATRIX_RANK_EXCEPTION = 'Can only perform operation on full-rank matrix.';
 
-     /**
 
-      * Array for internal storage of decomposition.
 
-      *
 
-      * @var array
 
-      */
 
-     private $QR = [];
 
-     /**
 
-      * Row dimension.
 
-      *
 
-      * @var int
 
-      */
 
-     private $m;
 
-     /**
 
-      * Column dimension.
 
-      *
 
-      * @var int
 
-      */
 
-     private $n;
 
-     /**
 
-      * Array for internal storage of diagonal of R.
 
-      *
 
-      * @var array
 
-      */
 
-     private $Rdiag = [];
 
-     /**
 
-      * QR Decomposition computed by Householder reflections.
 
-      *
 
-      * @param matrix $A Rectangular matrix
 
-      */
 
-     public function __construct($A)
 
-     {
 
-         if ($A instanceof Matrix) {
 
-             // Initialize.
 
-             $this->QR = $A->getArrayCopy();
 
-             $this->m = $A->getRowDimension();
 
-             $this->n = $A->getColumnDimension();
 
-             // Main loop.
 
-             for ($k = 0; $k < $this->n; ++$k) {
 
-                 // Compute 2-norm of k-th column without under/overflow.
 
-                 $nrm = 0.0;
 
-                 for ($i = $k; $i < $this->m; ++$i) {
 
-                     $nrm = hypo($nrm, $this->QR[$i][$k]);
 
-                 }
 
-                 if ($nrm != 0.0) {
 
-                     // Form k-th Householder vector.
 
-                     if ($this->QR[$k][$k] < 0) {
 
-                         $nrm = -$nrm;
 
-                     }
 
-                     for ($i = $k; $i < $this->m; ++$i) {
 
-                         $this->QR[$i][$k] /= $nrm;
 
-                     }
 
-                     $this->QR[$k][$k] += 1.0;
 
-                     // Apply transformation to remaining columns.
 
-                     for ($j = $k + 1; $j < $this->n; ++$j) {
 
-                         $s = 0.0;
 
-                         for ($i = $k; $i < $this->m; ++$i) {
 
-                             $s += $this->QR[$i][$k] * $this->QR[$i][$j];
 
-                         }
 
-                         $s = -$s / $this->QR[$k][$k];
 
-                         for ($i = $k; $i < $this->m; ++$i) {
 
-                             $this->QR[$i][$j] += $s * $this->QR[$i][$k];
 
-                         }
 
-                     }
 
-                 }
 
-                 $this->Rdiag[$k] = -$nrm;
 
-             }
 
-         } else {
 
-             throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION);
 
-         }
 
-     }
 
-     //    function __construct()
 
-     /**
 
-      *    Is the matrix full rank?
 
-      *
 
-      * @return bool true if R, and hence A, has full rank, else false
 
-      */
 
-     public function isFullRank()
 
-     {
 
-         for ($j = 0; $j < $this->n; ++$j) {
 
-             if ($this->Rdiag[$j] == 0) {
 
-                 return false;
 
-             }
 
-         }
 
-         return true;
 
-     }
 
-     //    function isFullRank()
 
-     /**
 
-      * Return the Householder vectors.
 
-      *
 
-      * @return Matrix Lower trapezoidal matrix whose columns define the reflections
 
-      */
 
-     public function getH()
 
-     {
 
-         for ($i = 0; $i < $this->m; ++$i) {
 
-             for ($j = 0; $j < $this->n; ++$j) {
 
-                 if ($i >= $j) {
 
-                     $H[$i][$j] = $this->QR[$i][$j];
 
-                 } else {
 
-                     $H[$i][$j] = 0.0;
 
-                 }
 
-             }
 
-         }
 
-         return new Matrix($H);
 
-     }
 
-     //    function getH()
 
-     /**
 
-      * Return the upper triangular factor.
 
-      *
 
-      * @return Matrix upper triangular factor
 
-      */
 
-     public function getR()
 
-     {
 
-         for ($i = 0; $i < $this->n; ++$i) {
 
-             for ($j = 0; $j < $this->n; ++$j) {
 
-                 if ($i < $j) {
 
-                     $R[$i][$j] = $this->QR[$i][$j];
 
-                 } elseif ($i == $j) {
 
-                     $R[$i][$j] = $this->Rdiag[$i];
 
-                 } else {
 
-                     $R[$i][$j] = 0.0;
 
-                 }
 
-             }
 
-         }
 
-         return new Matrix($R);
 
-     }
 
-     //    function getR()
 
-     /**
 
-      * Generate and return the (economy-sized) orthogonal factor.
 
-      *
 
-      * @return Matrix orthogonal factor
 
-      */
 
-     public function getQ()
 
-     {
 
-         for ($k = $this->n - 1; $k >= 0; --$k) {
 
-             for ($i = 0; $i < $this->m; ++$i) {
 
-                 $Q[$i][$k] = 0.0;
 
-             }
 
-             $Q[$k][$k] = 1.0;
 
-             for ($j = $k; $j < $this->n; ++$j) {
 
-                 if ($this->QR[$k][$k] != 0) {
 
-                     $s = 0.0;
 
-                     for ($i = $k; $i < $this->m; ++$i) {
 
-                         $s += $this->QR[$i][$k] * $Q[$i][$j];
 
-                     }
 
-                     $s = -$s / $this->QR[$k][$k];
 
-                     for ($i = $k; $i < $this->m; ++$i) {
 
-                         $Q[$i][$j] += $s * $this->QR[$i][$k];
 
-                     }
 
-                 }
 
-             }
 
-         }
 
-         return new Matrix($Q);
 
-     }
 
-     //    function getQ()
 
-     /**
 
-      * Least squares solution of A*X = B.
 
-      *
 
-      * @param Matrix $B a Matrix with as many rows as A and any number of columns
 
-      *
 
-      * @return Matrix matrix that minimizes the two norm of Q*R*X-B
 
-      */
 
-     public function solve($B)
 
-     {
 
-         if ($B->getRowDimension() == $this->m) {
 
-             if ($this->isFullRank()) {
 
-                 // Copy right hand side
 
-                 $nx = $B->getColumnDimension();
 
-                 $X = $B->getArrayCopy();
 
-                 // Compute Y = transpose(Q)*B
 
-                 for ($k = 0; $k < $this->n; ++$k) {
 
-                     for ($j = 0; $j < $nx; ++$j) {
 
-                         $s = 0.0;
 
-                         for ($i = $k; $i < $this->m; ++$i) {
 
-                             $s += $this->QR[$i][$k] * $X[$i][$j];
 
-                         }
 
-                         $s = -$s / $this->QR[$k][$k];
 
-                         for ($i = $k; $i < $this->m; ++$i) {
 
-                             $X[$i][$j] += $s * $this->QR[$i][$k];
 
-                         }
 
-                     }
 
-                 }
 
-                 // Solve R*X = Y;
 
-                 for ($k = $this->n - 1; $k >= 0; --$k) {
 
-                     for ($j = 0; $j < $nx; ++$j) {
 
-                         $X[$k][$j] /= $this->Rdiag[$k];
 
-                     }
 
-                     for ($i = 0; $i < $k; ++$i) {
 
-                         for ($j = 0; $j < $nx; ++$j) {
 
-                             $X[$i][$j] -= $X[$k][$j] * $this->QR[$i][$k];
 
-                         }
 
-                     }
 
-                 }
 
-                 $X = new Matrix($X);
 
-                 return $X->getMatrix(0, $this->n - 1, 0, $nx);
 
-             }
 
-             throw new CalculationException(self::MATRIX_RANK_EXCEPTION);
 
-         }
 
-         throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
 
-     }
 
- }
 
 
  |