| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 | 
							- <?php
 
- namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
 
- use PhpOffice\PhpSpreadsheet\Shared\JAMA\Matrix;
 
- class PolynomialBestFit extends BestFit
 
- {
 
-     /**
 
-      * Algorithm type to use for best-fit
 
-      * (Name of this Trend class).
 
-      *
 
-      * @var string
 
-      */
 
-     protected $bestFitType = 'polynomial';
 
-     /**
 
-      * Polynomial order.
 
-      *
 
-      * @var int
 
-      */
 
-     protected $order = 0;
 
-     /**
 
-      * Return the order of this polynomial.
 
-      *
 
-      * @return int
 
-      */
 
-     public function getOrder()
 
-     {
 
-         return $this->order;
 
-     }
 
-     /**
 
-      * Return the Y-Value for a specified value of X.
 
-      *
 
-      * @param float $xValue X-Value
 
-      *
 
-      * @return float Y-Value
 
-      */
 
-     public function getValueOfYForX($xValue)
 
-     {
 
-         $retVal = $this->getIntersect();
 
-         $slope = $this->getSlope();
 
-         foreach ($slope as $key => $value) {
 
-             if ($value != 0.0) {
 
-                 $retVal += $value * pow($xValue, $key + 1);
 
-             }
 
-         }
 
-         return $retVal;
 
-     }
 
-     /**
 
-      * Return the X-Value for a specified value of Y.
 
-      *
 
-      * @param float $yValue Y-Value
 
-      *
 
-      * @return float X-Value
 
-      */
 
-     public function getValueOfXForY($yValue)
 
-     {
 
-         return ($yValue - $this->getIntersect()) / $this->getSlope();
 
-     }
 
-     /**
 
-      * Return the Equation of the best-fit line.
 
-      *
 
-      * @param int $dp Number of places of decimal precision to display
 
-      *
 
-      * @return string
 
-      */
 
-     public function getEquation($dp = 0)
 
-     {
 
-         $slope = $this->getSlope($dp);
 
-         $intersect = $this->getIntersect($dp);
 
-         $equation = 'Y = ' . $intersect;
 
-         foreach ($slope as $key => $value) {
 
-             if ($value != 0.0) {
 
-                 $equation .= ' + ' . $value . ' * X';
 
-                 if ($key > 0) {
 
-                     $equation .= '^' . ($key + 1);
 
-                 }
 
-             }
 
-         }
 
-         return $equation;
 
-     }
 
-     /**
 
-      * Return the Slope of the line.
 
-      *
 
-      * @param int $dp Number of places of decimal precision to display
 
-      *
 
-      * @return string
 
-      */
 
-     public function getSlope($dp = 0)
 
-     {
 
-         if ($dp != 0) {
 
-             $coefficients = [];
 
-             foreach ($this->slope as $coefficient) {
 
-                 $coefficients[] = round($coefficient, $dp);
 
-             }
 
-             return $coefficients;
 
-         }
 
-         return $this->slope;
 
-     }
 
-     public function getCoefficients($dp = 0)
 
-     {
 
-         return array_merge([$this->getIntersect($dp)], $this->getSlope($dp));
 
-     }
 
-     /**
 
-      * Execute the regression and calculate the goodness of fit for a set of X and Y data values.
 
-      *
 
-      * @param int $order Order of Polynomial for this regression
 
-      * @param float[] $yValues The set of Y-values for this regression
 
-      * @param float[] $xValues The set of X-values for this regression
 
-      */
 
-     private function polynomialRegression($order, $yValues, $xValues)
 
-     {
 
-         // calculate sums
 
-         $x_sum = array_sum($xValues);
 
-         $y_sum = array_sum($yValues);
 
-         $xx_sum = $xy_sum = 0;
 
-         for ($i = 0; $i < $this->valueCount; ++$i) {
 
-             $xy_sum += $xValues[$i] * $yValues[$i];
 
-             $xx_sum += $xValues[$i] * $xValues[$i];
 
-             $yy_sum += $yValues[$i] * $yValues[$i];
 
-         }
 
-         /*
 
-          *    This routine uses logic from the PHP port of polyfit version 0.1
 
-          *    written by Michael Bommarito and Paul Meagher
 
-          *
 
-          *    The function fits a polynomial function of order $order through
 
-          *    a series of x-y data points using least squares.
 
-          *
 
-          */
 
-         for ($i = 0; $i < $this->valueCount; ++$i) {
 
-             for ($j = 0; $j <= $order; ++$j) {
 
-                 $A[$i][$j] = pow($xValues[$i], $j);
 
-             }
 
-         }
 
-         for ($i = 0; $i < $this->valueCount; ++$i) {
 
-             $B[$i] = [$yValues[$i]];
 
-         }
 
-         $matrixA = new Matrix($A);
 
-         $matrixB = new Matrix($B);
 
-         $C = $matrixA->solve($matrixB);
 
-         $coefficients = [];
 
-         for ($i = 0; $i < $C->getRowDimension(); ++$i) {
 
-             $r = $C->get($i, 0);
 
-             if (abs($r) <= pow(10, -9)) {
 
-                 $r = 0;
 
-             }
 
-             $coefficients[] = $r;
 
-         }
 
-         $this->intersect = array_shift($coefficients);
 
-         $this->slope = $coefficients;
 
-         $this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum);
 
-         foreach ($this->xValues as $xKey => $xValue) {
 
-             $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
 
-         }
 
-     }
 
-     /**
 
-      * Define the regression and calculate the goodness of fit for a set of X and Y data values.
 
-      *
 
-      * @param int $order Order of Polynomial for this regression
 
-      * @param float[] $yValues The set of Y-values for this regression
 
-      * @param float[] $xValues The set of X-values for this regression
 
-      * @param bool $const
 
-      */
 
-     public function __construct($order, $yValues, $xValues = [], $const = true)
 
-     {
 
-         if (parent::__construct($yValues, $xValues) !== false) {
 
-             if ($order < $this->valueCount) {
 
-                 $this->bestFitType .= '_' . $order;
 
-                 $this->order = $order;
 
-                 $this->polynomialRegression($order, $yValues, $xValues);
 
-                 if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
 
-                     $this->error = true;
 
-                 }
 
-             } else {
 
-                 $this->error = true;
 
-             }
 
-         }
 
-     }
 
- }
 
 
  |