12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- <?php
- namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
- class LogarithmicBestFit extends BestFit
- {
- /**
- * Algorithm type to use for best-fit
- * (Name of this Trend class).
- *
- * @var string
- */
- protected $bestFitType = 'logarithmic';
- /**
- * Return the Y-Value for a specified value of X.
- *
- * @param float $xValue X-Value
- *
- * @return float Y-Value
- */
- public function getValueOfYForX($xValue)
- {
- return $this->getIntersect() + $this->getSlope() * log($xValue - $this->xOffset);
- }
- /**
- * Return the X-Value for a specified value of Y.
- *
- * @param float $yValue Y-Value
- *
- * @return float X-Value
- */
- public function getValueOfXForY($yValue)
- {
- return exp(($yValue - $this->getIntersect()) / $this->getSlope());
- }
- /**
- * Return the Equation of the best-fit line.
- *
- * @param int $dp Number of places of decimal precision to display
- *
- * @return string
- */
- public function getEquation($dp = 0)
- {
- $slope = $this->getSlope($dp);
- $intersect = $this->getIntersect($dp);
- return 'Y = ' . $intersect . ' + ' . $slope . ' * log(X)';
- }
- /**
- * Execute the regression and calculate the goodness of fit for a set of X and Y data values.
- *
- * @param float[] $yValues The set of Y-values for this regression
- * @param float[] $xValues The set of X-values for this regression
- * @param bool $const
- */
- private function logarithmicRegression($yValues, $xValues, $const)
- {
- foreach ($xValues as &$value) {
- if ($value < 0.0) {
- $value = 0 - log(abs($value));
- } elseif ($value > 0.0) {
- $value = log($value);
- }
- }
- unset($value);
- $this->leastSquareFit($yValues, $xValues, $const);
- }
- /**
- * Define the regression and calculate the goodness of fit for a set of X and Y data values.
- *
- * @param float[] $yValues The set of Y-values for this regression
- * @param float[] $xValues The set of X-values for this regression
- * @param bool $const
- */
- public function __construct($yValues, $xValues = [], $const = true)
- {
- if (parent::__construct($yValues, $xValues) !== false) {
- $this->logarithmicRegression($yValues, $xValues, $const);
- }
- }
- }
|