123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- <?php
- namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
- use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
- /**
- * For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
- * unit lower triangular matrix L, an n-by-n upper triangular matrix U,
- * and a permutation vector piv of length m so that A(piv,:) = L*U.
- * If m < n, then L is m-by-m and U is m-by-n.
- *
- * The LU decompostion with pivoting always exists, even if the matrix is
- * singular, so the constructor will never fail. The primary use of the
- * LU decomposition is in the solution of square systems of simultaneous
- * linear equations. This will fail if isNonsingular() returns false.
- *
- * @author Paul Meagher
- * @author Bartosz Matosiuk
- * @author Michael Bommarito
- *
- * @version 1.1
- */
- class LUDecomposition
- {
- const MATRIX_SINGULAR_EXCEPTION = 'Can only perform operation on singular matrix.';
- const MATRIX_SQUARE_EXCEPTION = 'Mismatched Row dimension';
- /**
- * Decomposition storage.
- *
- * @var array
- */
- private $LU = [];
- /**
- * Row dimension.
- *
- * @var int
- */
- private $m;
- /**
- * Column dimension.
- *
- * @var int
- */
- private $n;
- /**
- * Pivot sign.
- *
- * @var int
- */
- private $pivsign;
- /**
- * Internal storage of pivot vector.
- *
- * @var array
- */
- private $piv = [];
- /**
- * LU Decomposition constructor.
- *
- * @param Matrix $A Rectangular matrix
- */
- public function __construct($A)
- {
- if ($A instanceof Matrix) {
- // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
- $this->LU = $A->getArray();
- $this->m = $A->getRowDimension();
- $this->n = $A->getColumnDimension();
- for ($i = 0; $i < $this->m; ++$i) {
- $this->piv[$i] = $i;
- }
- $this->pivsign = 1;
- $LUrowi = $LUcolj = [];
- // Outer loop.
- for ($j = 0; $j < $this->n; ++$j) {
- // Make a copy of the j-th column to localize references.
- for ($i = 0; $i < $this->m; ++$i) {
- $LUcolj[$i] = &$this->LU[$i][$j];
- }
- // Apply previous transformations.
- for ($i = 0; $i < $this->m; ++$i) {
- $LUrowi = $this->LU[$i];
- // Most of the time is spent in the following dot product.
- $kmax = min($i, $j);
- $s = 0.0;
- for ($k = 0; $k < $kmax; ++$k) {
- $s += $LUrowi[$k] * $LUcolj[$k];
- }
- $LUrowi[$j] = $LUcolj[$i] -= $s;
- }
- // Find pivot and exchange if necessary.
- $p = $j;
- for ($i = $j + 1; $i < $this->m; ++$i) {
- if (abs($LUcolj[$i]) > abs($LUcolj[$p])) {
- $p = $i;
- }
- }
- if ($p != $j) {
- for ($k = 0; $k < $this->n; ++$k) {
- $t = $this->LU[$p][$k];
- $this->LU[$p][$k] = $this->LU[$j][$k];
- $this->LU[$j][$k] = $t;
- }
- $k = $this->piv[$p];
- $this->piv[$p] = $this->piv[$j];
- $this->piv[$j] = $k;
- $this->pivsign = $this->pivsign * -1;
- }
- // Compute multipliers.
- if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) {
- for ($i = $j + 1; $i < $this->m; ++$i) {
- $this->LU[$i][$j] /= $this->LU[$j][$j];
- }
- }
- }
- } else {
- throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION);
- }
- }
- // function __construct()
- /**
- * Get lower triangular factor.
- *
- * @return Matrix Lower triangular factor
- */
- public function getL()
- {
- for ($i = 0; $i < $this->m; ++$i) {
- for ($j = 0; $j < $this->n; ++$j) {
- if ($i > $j) {
- $L[$i][$j] = $this->LU[$i][$j];
- } elseif ($i == $j) {
- $L[$i][$j] = 1.0;
- } else {
- $L[$i][$j] = 0.0;
- }
- }
- }
- return new Matrix($L);
- }
- // function getL()
- /**
- * Get upper triangular factor.
- *
- * @return Matrix Upper triangular factor
- */
- public function getU()
- {
- for ($i = 0; $i < $this->n; ++$i) {
- for ($j = 0; $j < $this->n; ++$j) {
- if ($i <= $j) {
- $U[$i][$j] = $this->LU[$i][$j];
- } else {
- $U[$i][$j] = 0.0;
- }
- }
- }
- return new Matrix($U);
- }
- // function getU()
- /**
- * Return pivot permutation vector.
- *
- * @return array Pivot vector
- */
- public function getPivot()
- {
- return $this->piv;
- }
- // function getPivot()
- /**
- * Alias for getPivot.
- *
- * @see getPivot
- */
- public function getDoublePivot()
- {
- return $this->getPivot();
- }
- // function getDoublePivot()
- /**
- * Is the matrix nonsingular?
- *
- * @return bool true if U, and hence A, is nonsingular
- */
- public function isNonsingular()
- {
- for ($j = 0; $j < $this->n; ++$j) {
- if ($this->LU[$j][$j] == 0) {
- return false;
- }
- }
- return true;
- }
- // function isNonsingular()
- /**
- * Count determinants.
- *
- * @return array d matrix deterninat
- */
- public function det()
- {
- if ($this->m == $this->n) {
- $d = $this->pivsign;
- for ($j = 0; $j < $this->n; ++$j) {
- $d *= $this->LU[$j][$j];
- }
- return $d;
- }
- throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
- }
- // function det()
- /**
- * Solve A*X = B.
- *
- * @param mixed $B a Matrix with as many rows as A and any number of columns
- *
- * @throws CalculationException illegalArgumentException Matrix row dimensions must agree
- * @throws CalculationException runtimeException Matrix is singular
- *
- * @return Matrix X so that L*U*X = B(piv,:)
- */
- public function solve($B)
- {
- if ($B->getRowDimension() == $this->m) {
- if ($this->isNonsingular()) {
- // Copy right hand side with pivoting
- $nx = $B->getColumnDimension();
- $X = $B->getMatrix($this->piv, 0, $nx - 1);
- // Solve L*Y = B(piv,:)
- for ($k = 0; $k < $this->n; ++$k) {
- for ($i = $k + 1; $i < $this->n; ++$i) {
- for ($j = 0; $j < $nx; ++$j) {
- $X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
- }
- }
- }
- // Solve U*X = Y;
- for ($k = $this->n - 1; $k >= 0; --$k) {
- for ($j = 0; $j < $nx; ++$j) {
- $X->A[$k][$j] /= $this->LU[$k][$k];
- }
- for ($i = 0; $i < $k; ++$i) {
- for ($j = 0; $j < $nx; ++$j) {
- $X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
- }
- }
- }
- return $X;
- }
- throw new CalculationException(self::MATRIX_SINGULAR_EXCEPTION);
- }
- throw new CalculationException(self::MATRIX_SQUARE_EXCEPTION);
- }
- }
|